PERGAMON

Robotics and Computer Integrated Manufacturing 15 (1999) 431-440

Robotics
and
Computer Integrated
Manufacturing

www.elsevier.com/locate/rcim

The NEXUS open system for integrating robotic software™

Juan A. Fernandez*, Javier Gonzalez

Departamento de Ingenieria de Sistemas y Automatica (ISA), E.T.S.1. Informatica, Universidad de Malaga, Campus Teatinos - 29080 Malaga, Spain
Received 1 October 1998; received in revised form 29 March 1999; accepted 30 April 1999

Abstract

In this paper a framework for constructing flexible, robust and efficient software applications for robots is described. The basic
concepts needed to integrate complex, multidisciplinary robot software architectures are identified, and the methods to achieve them
are taken from different areas of research (programming languages, network communication systems, real-time systems, etc.). The
result is an open software system called NEXUS which includes the basic characteristics needed for the integration of very different
software modules, minimizing the effort of integration and maximizing the reusability, efficiency and robustness of the resulting
software applications. This software has proven to be a basis for more sophisticated tools that help in reducing the cost of
modifications to and the complexity of multidisciplinary projects, allowing highly structured and reusable designs to be implemented.
Although it has been currently implemented for mobile robots, it is a sufficiently generic framework suitable for use in other control

systems. © 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In multidisciplinary areas of research such as robotics,
a need exists for using a framework that enables a com-
plex software application to connect its elements easily
and flexibly, while providing the designers with well-
defined methods for upgrading the overall structure of
the application through its entire development cycle.
This becomes especially necessary due to the number of
people from different disciplines who can be involved in
the research project. An example is mobile robotics,
where software must be developed for device controllers,
perception systems, remote operation, artificial intelli-
gence, etc.

The elements involved in the implementation of a ro-
botic application can be divided into software for the
application, hardware devices, and operating systems. The
software for the application can take advantage of a com-
mon integration system, while the hardware devices and
operating systems tend to be more vendor-dependent and
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rigid in this respect. Therefore, a suitable solution to the
problem of integration is an open software system [1]
which is located between the operating systems and the
software for the application (see Fig. 1).

We have identified the following basic characteristics
that an open software system for integrating parts of
a robotic application should provide:

Portability: Any program should be able to run on any
platform with minor changes in its internal structure.

Upgradeability and Reusability: Any program should be
able to extend its capabilities without affecting existing
applications, or to be substituted by other programs with
a similar functionality.

Interoperability and Distribution: The different software
modules of an application should be able to exchange
data, and to run in different machines from which each
one obtains the maximum efficiency.

Efficiency: The use of software that integrates other
software should guarantee the achievement of certain
efficiency requirements, i.e., real-time response. From
a different perspective, the integration process should
also be efficient in the sense that it should be performed
in minimum time and with minimum effort.

Robustness: Current robot control architectures re-
quire a high degree of robustness, since they are often
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Fig. 1. An open system can be located between the OS and the software
for the application. This joints the flexibility of software for implemen-
ting it with the portability on a wide range of different physical plat-
forms.

used in real, critical situations. The integration system
should provide appropriate mechanisms for guarantee-
ing it.

This paper describes an open software system called
NEXUS that provides all these characteristics:

e It is based on techniques from object-oriented
programming languages. The software parts of an
application are defined as modules that hide their
implementation details while providing their function-
ality through a simple interface. In addition, it pro-
vides a basic library of functions that hide the
operating system protocols for many operations (disk
operations, interprocess communications, memory
management, etc.). In this way it achieves portability,
upgradeability and reusability.

e It is a tool for obtaining distributed applications. The
communication system between software modules is
an intermediate scheme lying between a subscrip-
tion/production network and a client/server paradigm.
It joins the efficiency in communications of the former
with the flexibility and implementation simplicity of
the latter. Moreover, module distribution, although
controlled by the implementors of the application at
the design stage, is completely transparent for the
modules at running time.

e Since the framework has been implemented on real-
time operating systems, it inherits real-time mecha-
nisms from them that are provided to the modules of
the application. On the other hand, efficiency is also
achieved at the design stage by using simple interfaces
to integrate very different modules.

e Finally, it implements a hierarchical scheme for detec-
tion of run-time errors that allows the programmers to
implement very robust applications.

Our system has been designed for reducing both the
cost of development as well as further modifications to
complex robotic software applications. Although it has

been used in mobile robots, it is a sufficiently generic
framework suitable for use in other control systems (for
example, CIM applications). The main contribution of
our work is to provide a general-purpose framework that
implements all the basic concepts needed for integrating
a control architecture, and that serves as a basis for more
sophisticated tools.

Section 2 discusses related works of importance. Sec-
tion 3 describes all the components of NEXUS, and the
ways they guarantee the characteristics of an open sys-
tem. Section 4 explains the process needed to implement
applications. Section 5 shows a real example of the integ-
ration achieved in a real mobile robot system, and the
performance measurements that can be obtained from
the behavior of the application. The paper ends with
conclusions and several lines for future research.

2. State of the art and related work

Several tools and techniques that facilitate the integra-
tion of robotic control architectures have been developed
over the last few years. Most of them provide meaningful
insights into very specific domains or particular levels of
abstraction. The contribution of NEXUS is that it imple-
ments all the basic concepts needed to obtain maximum
flexibility in the integration of software (portability, up-
gradeability, reusability) along with good performance
and robustness. The main objective has been to obtain
the simplest system that provides these characteristics,
serving as a complete basis to implement more sophisti-
cated tools.

Fig. 2 shows a possible classification of the parts of the
software architecture which are involved in a complex,
multidisciplinary robotic application. They range from
the highest level of abstraction of the architecture, the
decision level, which contains the components that allow
the application to make intelligent decisions, develop
long-term plans, etc., to the lowest level of abstraction:
the one which deals with the hardware devices and the
operating system. The functional level contains the com-
ponents which implement control loops, behaviors, and,
in general, the basic processes which are not concerned
with long-term issues.

In the following, we review relevant works on integrat-
ing systems that cover some or all these levels. Since
NEXUS is mostly concerned with the functional level, we
pay more attention to the works done in this area.

2.1. The decision level

A survey of the most important knowledge representa-
tion schemes used in robotics, such as frames, scripts,
feedback approaches, and rule-based systems can be
found in [2]. One of the tools that has been developed to
implement these high-level knowledge representations is
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Fig. 2. The pyramid of software engineering tools for robot control
architectures. The elements generated by these tools fit into the several
levels of the architecture. In the figure three abstraction levels are
distinguished: a decision level (planning, knowledge modelling), a func-
tional level (behaviors, control loops) and a hardware-dependent level
(basic software to manage the hardware devices).

the MAESTRO language [3], which has been designed
to specify, validate and implement robot missions effi-
ciently. The programs generated by MAESTRO can be
proven to satisfy their specifications before executing.

In [4] another system is presented for generating code
for the decision level. It is based on a temporal planning
system called IxTeT which can reason on symbolic and
numeric temporal relations between time instants. The
plans are executed as event-driven automata.

2.2. The functional level

Several robot architectures that allows the recon-
figuration of their functional components can be found in
the literature. Among the most interesting ones are the
TCA [5], CODGER [6], and NASREM [7]. TCA and
CODGER are centralized architectures, while NASREM
is a hierarchical one. There are several differences be-
tween NEXUS and these systems, the most important
being that the former is completely non-centralized
(a wide range of control architectures can be imple-
mented: from decentralized to hierarchical), and it is
focused on the modular and portable aspects of the
application.

In [4], the guidelines of a complete system for design-
ing a robot control architecture are presented. The
problem is also addressed in [8], where the ORCCAD
development system is described in detail. They provide
the implementors with a human-machine interface based
on an object-oriented paradigm suitable for designing
robot tasks. The supervision of these tasks by the compo-
nents at the decision level, i.e., the connection between
both levels, is performed via a finite-state automaton.
However, the problem of integrating the components at
the functional level is not addressed.

Some commercial applications exist which include the
most important characteristics mentioned in the previous

paragraphs. The CODE programming interface by
Cimetrix [9] provides an API with function calls for
the control of mechanisms, input/output, trajectory
planning, etc., in a system that is suitable for CIM archi-
tectures. Another framework for real-time system devel-
opment is ControlShell by RTI [10]. It combines CASE
tools and object-oriented techniques to generate, imple-
ment, and debug applications consisting of separate ob-
jects. It also provides a scheme for integrating and
reusing these objects, as well as reducing the costs of
implementation. However, it does not address the prob-
lem of integrating the components of the functional
level with components of the decision level that are not
generated.

Of special interest is the G"M framework [11] be-
cause of its similarity to our system. Both of them specify
the components of the architecture as modules that pro
vide services to the rest of the application. This leads to
an efficient, flexible and robust way of designing, integ-
rating and reusing the elements of the functional level. In
G$"M the code of the modules is generated automatically
from templates that are filled by the programmers. Also,
it provides tools for debugging the code. The connection
with the decision level is performed by means of the
Kheops rule-based system, although they do not focus
their work on this issue. The communication system
between modules is not addressed either.

Another example of an open system at the functional
level is the OSACA architecture [1]. It is intended to set
a standard for the implementation of control systems,
providing an open framework that hides vendor-specific
details. The basic components of OSACA are analogous
to those of NEXUS, although the latter provides a more
general network protocol than a client/server paradigm
and those characteristics for real-time response needed in
more dynamic and unstructured applications, such as
mobile robotics.

2.3. The hardware-dependent level

Several real-time operating systems have been de-
signed for implementing control architectures. For com-
pleteness we mention some of them along with their most
important features. ALBATROSS [12] provides hard
real-time communications between tasks through shared
memory. The Harmony OS [13] supports transparent
multiprocessing that enables finding the optimal load
balancing among a number of processors. Chimera II
[14] provides great efficiency in distributed applications
and is the basis for more abstract works mentioned in the
previous subsection.

The use of an operating system designed explicitly for
robotic applications facilitates the development of very
efficient applications, although it involves implementing
large amounts of code that is not directly related to the
integration problem.
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3. Description of the NEXUS system

In our framework, an application is defined as an
integration of different software modules that provide
services to each other, aimed at accomplishing a given
robotic task. The modules hide their implementation
details: only the services and the format of their input and
output parameters are known by other modules. The
format of these data is a predefined one, very simple but
general enough to capture the functionality of a wide
class of services. Libraries of functions are provided to
the implementors of the modules in order to access both
the other modules and the OS. This basic scheme guaran-
tees many of the characteristics needed in an open sys-
tem: portability, since the modules access NEXUS and
the OS through general and simple interfaces that can be
adapted to very different hardware platforms and operat-
ing systems; upgradeability, since a change in any module
that does not change its functionality (its set of services)
does not affect the rest of the application; and reusability,
since any module can be plugged into another applica-
tion that needs its functionality without knowing its
implementation details.

As shown in Fig. 3, our system is divided into two
subsystems. The Task-Dependent Subsystem contains the
sets of modules of the application. These sets, called
Conceptual Units, are used by the implementors for clar-
ity in the design of the application. The Management
Subsystem is common for every application: it contains
the managers needed for maintaining the structural
information about the modules and for supporting
communications. In the following subsections a more
complete description of these subsystems is given.

3.1. The task-dependent subsystem

The task-dependent subsystem varies for each applica-
tion. It includes the entities called ICE modules,! or sim-
ply modules. Each module provides some services that
define its functionality. ICE modules can be grouped into
Conceptual Units. The ICE modules are plugged into
NEXUS before the application execution begins. This
plugging-in stage is an automatic operation consisting
just in executing the executable file of the module, and is
simple enough to allow any module to be substituted by
another that provides the same functionality at any time.

In the following, the components of the Task-Depen-
dent Subsystem are described in detail.

3.1.1. Conceptual units (CUs)
For achieving a clear design of the application, a CU
should contain all the modules concerning a given

1“ICE” stands for the initials of the three main components of
a module: Interface, Code, and Error-recovery code.
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Fig. 3. Components of NEXUS. The Conceptual Units represented in
the task-dependent subsystem are an example (this subsystem depends
on the application being implemented).

conceptual area of operation of the robot system. The
definitions of these conceptual areas depend on the ap-
plication being implemented. For example, it may be
desirable to group into the same CU all the modules that
deal with the sensors of a mobile robot (laser scanners,
sonars, cameras), or the modules related to the operation
of navigation.

3.1.2. Services

Each service of a module is defined through three
parameters: its input data, its output data, and its charac-
teristics. The characteristics of a service specify its
functionality (whether it is a service for consulting
-query-, updating -modifier-, or monitoring -monitor- the
module status), its duration (whether the requests last
until the architecture is deactivated -permanent-, or not
-temporary-), and its concurrency (whether several re-
quests can be served at the same time or not -reentrant or
non-reentrant-). Any service is described by a subset of
these characteristics. This allows the programmers to
implement a wide range of services, for example those
that run periodically, or those that execute only when
a given asynchronous signal is received.

In order to guarantee real-time response, a request for
a service may hold information about the temporal re-
quirements to be met, i.e., the maximum time allowed to
serve the request. If these temporal constraints are not
satisfied, the Management Subsystem automatically
replies to the routine which sent the original request,
including information about the error.

3.1.3. ICE modules

ICE modules are the main components of the CUs.
Each module is executed on a single computer, and
therefore all the services that it provides are served from
that machine. The possibility of distributing the ICE
modules among the computers of the robotic system
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permits optimal exploitation of the available hardware
resources. For example, one computer in the system may
be more appropriate for image processing than others, so
the ICE modules which offer services related to visual
perception should execute in that machine.

An ICE module consists of three parts:

Interface: The interface part of the module defines the
services implemented in the module and receives the
requests for services, executes the code that serves them,
and sends back the output data to the requesters. It also
provides the rest of the application with the public in-
formation about the functionality of the module. In
Fig. 7 an example of the definition of services is shown.

Code: In addition to the code of the routines that
supply services, this part also contains two special rou-
tines for both initializing and finishing the internal status
of the module (internal static variables, configuration of
the module, etc.).

Error-recovery code: This part deals with the errors
that the module may find during its execution. Some of
them can be overcome by the module, while others must
be propagated to the module services requesters. The
mechanisms provided to deal with errors are described in
the following paragraphs.

3.1.4. Hierarchical error recovery system

Error recovery usually involves some sort of replann-
ing, that is, re-structuring the execution of a failed
operation. This process should be performed as near as
possible to the point at which the error is detected. The
hierarchical scheme used by NEXUS guarantees this. It
is possible to integrate very robust applications if this
mechanism is used appropriately.

The different classes of errors that can occur during the
execution of a service request, and the ways by which
they could overcome, are shown in Fig. 4. Errors that the
service routine can manage by itself are called recoverable
errors. When a recoverable error occurs the very routine
which is serving the request will replan its execution to
overcome it. In contrast, those errors which the service
routine cannot deal with on its own are called unrecover-
able errors. They have to be reported to the module that
issued the service request. The code in charge of this is in
the Error-recovery-code part of the module.

There are some special unrecoverable errors called
critical errors caused by unexpected failures in a process
or a machine that prevents sending a report to the re-
quester, and cannot be completely solved by the module
programmers. For example, when a module? is killed, all
the routines which are providing services in that module
may be killed. NEXUS detects most of the critical errors

2In the LynxOS implementation, a module is implemented as
a single process which consists of many subprocesses (tasks or threads).
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Fig. 4. Classes of run-time errors that can occur during the execution of
an application. (a) Recoverable errors can be managed by the routine
which detects them. (b) Unrecoverable errors have to be propagated to
the requesters of the service which makes the detection. (c) Critical
errors that cannot be managed by the application are detected and
solved by the system managers.

and communicates their occurrence to the other parts of
the robot system automatically (via events, described in
Section 3.2). Among other things, it detects and tolerates
module killing, out-of-time service replies, and wrong
communications formats. Due to its distributed nature,
an application can also continue executing despite a ma-
chine shutting down.

Other critical errors which might lead the application
to an unstable status (for example, when a module uses
most of the CPU time because of a corrupted code or
a wrong algorithm) are handled by the multi-priority and
preemptability features inherited from the underlying
real-time OS. The ICE modules are prioritized with re-
spect to other modules, and the services of a module are
prioritized with respect to other services in the same
module. This is a simple way to design the priorities
scheme for any application in order to limit the system
resources that each routine can consume.

3.2. The management subsystem

This subsystem contains the common facilities re-
quired in any robotic application. Currently two
managers are implemented: the Internal Communications
Manager (ICM) and the Architecture Information Manager
(AIM) which run in every machine of the robot system.
All the communications between the different compo-
nents of the architecture are managed by the ICM, and
the structural information about the architecture is
stored and managed by the AIM.

3.2.1. The Internal Communications Manager (ICM)

The ICM is in charge of distributing information
among the different components of the robot system. If
the source and destination modules of an information
package are not being executed on the same computer,
the communication is routed to the ICM of the destina-
tion machine, and then it is directly sent to the suitable
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module. The ICM can also register the message flow of
the application for further study.

Two types of communications exist in the architecture:
messages, that contain an arbitrary amount of data (for
example, requests to any component of the system, or
replies to these requests) and events, that do not contain
any information and are sent to all the modules of the
application at the same time. With these basic types of
communications, both synchronous and asynchronous
concurrent processing can be implemented. Messages are
used to request and reply service requests, while events
are used for asynchronous operation. For example, if
there is a module called “Battery Sentinel” offering
a monitor service which supervises the charge level of the
batteries of a mobile robot, an event can be defined for
informing the other modules about whether the charge
falls below a certain level.

The communication system might be seen as a client/
server one because every module becomes a server for the
service requests of other modules (the clients). However,
the existence of an AIM (with all the information that it
holds) in every computer makes it more similar to a sub-
scription/production one: the information exists in the
network, not in a particular machine. The modules regis-
ter their services at plugging-in time, and the transmis-
sion of this information to all the computers becomes
a sort of subscription to these services. The difference with
a more flexible subscription/production system (such as
the NDDS [25]) is that all the machines subscribe to the
services of the rest. However, the communication system
of NEXUS still provides a higher level of robustness
and more efficient communications than a pure client/
server one.

The components that allow to establish the network
communications needed for distributing the applications
are inside each ICM, and they are called network-ex-
changes [15]. The network-exchanges of the ICMs are
not visible for the programmers of applications, but this
abstract data type can be used separately in any module
for implementing other communication schemes, for
example, communications from a module to a web page
in the internet, or to a platform on which NEXUS does
not run.

Network-exchanges are very easy to use, and at the
same time are powerful tools that offer modularity,
flexibility, reliability, and robustness. The purpose of
a network-exchange is to make the underlying network
transparent for the programmer. Currently, they are
implemented using the TCP and UDP protocols, but
other versions may be developed. Network-exchanges
establish a security context between local and remote
ICMs. It is guaranteed that every communication
through network-exchanges is sequenced and undup-
licated. They also provide a query interface to perform
network administration tasks, including query services
for the current state (number and characteristics of con-

nections, traffic flow) and event facilities which are useful
to assure real-time response. A network-exchange con-
sists of four agents and a connection set that contains
Zero or more one-way connections to or from other
network-exchanges.

3.2.2. The Architecture Information Manager (AIM )

The AIM maintains all the structural information
about the application: CUs, Services, and ICE modules.
In our distributed system, the existence of many AIMs
(one in each computer) might lead to inconsistency prob-
lems between the data stored in each one. This is solved
by reporting to each AIM the modifications made in the
other ones. Therefore, any change made in the database
of one machine must be sent through the network.
Although this process can certainly be slow, it is limited
to occurring only before activating the architecture, and
consequently it does not affect the performance of the
application during its normal operation.

4. Implementing applications

Our system has been written in C and C+ + and
implemented completely on LynxOS. The implementa-
tion consists of an executable file that contains the ICM
and the AIM and two C libraries for linking with the
code of the modules. One of these libraries contains all
the routines for accessing NEXUS and for requesting
services, sending replies to service requests, declaring
event handlers, etc. The other one is an interface with
X/Motif and is optional.

The process of implementing a module just consists in
defining the services that it will provide (the Interface part
of the module) and programming the routines that serve
requests for these services (the Code and Error-recovery-
code parts of the module). These parts are linked together
with the libraries in order to form a single executable file.
A function from the libraries is in charge of connecting
the module and registering its services in the system
database automatically.

The requirements that a routine for serving service
requests must satisfy to be included in the Code part of
a module are:

(1) Error propagation to the requesters.

(2) Interfacing with the underlying OS by using the
libraries.

(3) Semaphore protection in the reentrant portions of
the code.

Note that this simplicity in designing and connecting
modules facilitates the integration of software pro-
grammed by different people while offering a simple
interface to the common resources needed in any control
system.
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4.1. Access of the applications to the Operating System

The libraries provided to the programmers are aimed
at implementing portable accesses to the OS. They offer
the following interfaces:

e Disk operations interface.

e Memory management interface.

o Multiprocessing interface (threads, processes, sema-
phores, etc.).

e Several inter-process communication interfaces (mess-
age queues, signals, etc.).

e Real-time interface (real-time events, timings, pre-
emptability, etc).

o Network communication interface (based on net-
work-exchanges).

e Graphic windows-based interface.

They can be easily adapted to run on a wide range of
platforms, so the applications become very portable. The
basic requirements for the OS on which NEXUS is to be
implemented are satisfied by any UNIX-like OS with
multiprocessing and real-time features such as accurate
timings, multiple priority levels, and preemptability.
Currently, it is completely implemented on LynxOS, and
a reduced version has been implemented on Windows
NT. In the future, other versions will be developed
(e.g., RT-Linux).

5. A real application

Up to now, our system has been implemented and
tested in several mobile robots. One of these is the
RAM-2 mobile robot (Fig. 5), an autonomous mobile
robot designed and built at the University of Malaga for
research applications in indoor environments [16]. It has
a variety of sensors such as two laser scanners, a sonar
ring and a camera, and a manipulator arm placed in front
of the platform. The robot contains two onboard
Pentium cards, one of which supports the Lynx real-time
operating system, while the other supports Windows NT.

The overall objective is to obtain a robot delivery
system capable of taking small objects from one place to
another inside a structured office-like environment.
A small application that partially achieves this objective
in a semi-autonomous fashion has been implemented.
For this purpose, most of the physical components of the
robot are used: a radial laser scanner for constructing 2D
representations of the rooms, a frontal laser scanner for
detecting dynamic obstacles, a manipulator arm to grasp
and drop objects on the commands of a remote operator
(guided by a camera), and motor, steering and odometric
systems to perform navigation and dead-reckoning.

More than 10 different ICE modules have been imple-
mented for managing these systems and performing com-
plex tasks. In parallel, simulation modules with the same

Fig. 5. The RAM-2 mobile robot, on which NEXUS has shown its
flexibility for integrating software programmed by several researchers.
(1) Radial laser scanner. (2) Camera. (3) Robot arm. (4) Frontal laser
scanner. (5) Sonars. (6) On-board display.

functionality as the ones dealing with physical devices
(motors, lasers, etc.) have been implemented in order to
test the system intensively. Fig. 6 shows the topology of
the application with all the modules and conceptual
units, and their location on each computer motherboard.
Some of them were already developed as simpler, indi-
vidual experiments, while others have been designed ex-
plicitly for this application. The former ones have been
adapted to NEXUS quickly (typically, generic programs
can be adapted in a few hours). Most of the time has been
spent in solving several bugs and errors that were not
detected in the original experiments. When a large num-
ber of modules are integrated and work together, these
errors tend to appear rather easily. Our system has dem-
onstrated its robustness in these cases, allowing the ap-
plication to keep running with a reduced performance, or
to finish the execution in a controlled way.

The Device Interfaces CU contains the modules needed
to deal with the physical components of the mobile
robot: lasers, motors, and manipulator. All of them have
a simulation counterpart in order to test the application
before involving the system in physical movements. The
World Model CU includes a module that merges 2D local
maps of the environment into global ones (useful for
self-location of the robot [17,18]) and a module that
integrates all these maps and other kinds of information
from the environment into a highly structured topologi-
cal and hierarchical model based on Multi AH-Graphs
[19,207]. The Navigation CU contains modules that gener-
ate paths on the 2D geometrical maps for going from one
place to another and execute these paths while detecting
and avoiding dynamic obstacles [21]. The Teleoperation
CU enables a remote operator to move the robot arm
and a pan/tilt camera system in order to manipulate
objects. For this purpose, it contains a module that
communicates with a remote station (that does not run
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NEXUS) via radio ethernet, using network-exchanges,
and another module that moves the camera plugged into
the Windows NT motherboard. Finally, the Task Execu-
tion CU contains a module which executes high-level
tasks such as navigating from one room to another,
constructing maps and topologies of the environment, or
delivering objects to any location in the building. These

Task Execulion CU Navigation CU

Command Executor 4> BT

Path Trscking‘anﬂ Navigation
A
World Mode! CU
Windows' NT Computer

I Multi AH-Graphs

Telsoperation CU

2D Geometrical Maps

Deavice Interfaces CU :

l Radial Laser Scanner |

Frontal Laser Scanner
Motor steering and
Odometric Systems

Radial Laser Scanner Simulaﬁunl

[Fromal Laser Scanner SimuTa!ion|

Motor, steering and
Odometric Systems
Simulation

Manipulator Simulation

Lynx0S Computer

Fig. 6. Conceptual Units and modules implemented for the application
described in Section 5. Since the RAM-2 mobile robot contains two
motherboards, one running LynxOS and the other windows NT, the
modules are spread on them maximizing the suitability of each platform
for their tasks. The Windows NT platforms is used for managing
teleoperation and dealing with the cameras, while the LynxOS platform
is in charge of performing more critical real-time processes.

complex tasks are implemented internally as state ma-
chines that send requests for services from the other
modules.

In Fig. 7, definitions for some of the services provided
by the modules of the application are shown. The follow-
ing examples illustrate the wide class of services that have
been implemented in this case:

Periodical monitor services: An example is the service in
charge of reading data from the frontal laser at a fixed
frequency of 20 Hz. These types of services are highly
prioritized with respect to other services in the applica-
tion in order not to lose possibly critical data. Often they
are the services that send asynchronous events to the
architecture when delicate situations occur.

Graphical monitor services: Most of the modules open
graphical windows to show their internal status and for
enabling the user to change them. The code associated
with each of these windows is part of low priority moni-
tor services whose execution does not affect the rest of the
application’s performance.

Root services: They are services that are usually reques-
ted by an operator action on a text terminal or graphical
window (that is, on a monitor service). They originate
other requests in order to successfully execute a complex
task. The Task Execution CU contains most of the servi-
ces of this type.

Normal synchronous services: Most of the services of
the application belong to this class. They are executed as
the result of an incoming request from another module
and after a (typically) short processing, they yield some
result.

Regarding the performance of the application,
Fig. 8 shows the timing diagram for the message flow
logged by the ICM while RAM-2 was navigating. Several
timing parameters appear, such as the total time elapsed

MODULE : Motor, Steering and Odometric Systems
MODULE PRIORITY: 1200
Service Input Data Output Data Charact. Priority

ReadDynamicsStatus &

GraphicStatusRobot =

UpdatesStatusRobot =

SetVelocityCurvature float new_velocity;
float new_curvature;

i MODIFIER UNKNOWN

float velocity; REENTRANT UNKNOWN

float curvature;

= MONITOR 0
PERMANENT
GRAPHICAL

= MONITOR 1000
PERMANENT

Fig. 7. Definitions of some services of the real application commented in Section 5. They include short names for the services, format of the input and
output data, characteristics and relative priorities with respect to other services of the same type in the same module. The module is also assigned
a relative priority with respect to the other modules of the applications. As shown in the figure, monitoring permanent services are running from the
activation of the application to the end of it, therefore they do not need input or output data. However the rest of the services are executed by request
and they may provide output data or need input data for their internal processes.
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Fig. 8. Timing diagram generated by the ICM while executing the application designed for the experiment in Section 5. The 2D-bar segments indicate

the time elapsed in serving each service request.

in the experiment, the number of services involved,
etc. The average time between the arrival of a service
request to a module and the response to it is 0.028s.
This value depends on each application and serves for
debugging purposes. The timing diagram obtained by the
ICM consists of 2D horizontal bars that measure these
periods. Due to the preemptive features of LynxOS,
services with high priorities (the “Read current speed
and curvature” and “Read current position and orienta-
tion”, for example) maintain their timings in spite of
others with lower priorities (such as “Calculate robot
position”).

6. Conclusions and future work

In this paper we have described NEXUS, a software
extension of a real-time operating system that allows us
to integrate the software elements of a robot system in
a flexible and efficient way. Its main feature is that it
decouples the programs designed for the application
from the fixed software and hardware of the robot sys-
tem. To achieve this, it inherits some important features
from high-level programming languages (encapsulation,
hierarchical error recovery, modularity, etc.) and from
the subscription/production paradigm.

We have experimentally tested the advantages of this
framework by designing applications in which our mo-
bile robot RAM-2 serves as a delivery agent in an indoor
environment. The application consists of more than 10
modules developed by different people. Some of them
were available as part of previous applications and others
have been implemented for this test. The process of
adapting the existing code has been surprisingly short:
only a few hours for each module. The robustness of the

whole system has been demonstrated. When critical er-
rors made some modules break down the rest of the
system was able to continue a limited but correct opera-
tion. In addition, the performance of the applications has
been satisfactory.

NEXUS has been designed as a complete basis on
which to implement more sophisticated tools for the
integration and implementation of complex control ap-
plications. Currently we are working on some extensions:

e Implementing versions of the system for other plat-
forms, such as RT-Linux.

Enabling secure accesses to applications from the in-
ternet (WWW).

Providing more powerful visual tools for designing,
programming, and debugging applications.
Collecting a number of libraries for the robotics do-
main, such as kinematics, plan execution, petri-nets
plan specification, etc.

Extending NEXUS to manage dynamic binding, that
is, assignment instances of server routines for service
requests at run-time.

References

[1] Sperling W, Lutz P. Enabling open control systems — an intro-
duction to the OSACA system platform. Robotics and Manufac-
turing, vol. 6, New York: ASME Press, 1996.

[2] Wolfe WJ, Chun WH. Robot architectures and design paradigms.

Proceedings of the SPIE Mobile Robot VII Conference, Boston,

vol. 1831, 1992. p. 307-17.

Coste-Maniere E, Turro N. The MAESTRO language and its

environment: specification, validation and control of robotic

missions. Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS’97), Grenoble, France,

1997.

(3]



440 J.A. Fernandez, J. Gonzalez | Robotics and Computer Integrated Manufacturing 15 (1999) 431-440

[4] Alami R, Chatila R, Espiau B. Designing an intelligent control
architecture for autonomous robots. International Conference on
Advanced Robotics (ICAR’93), 1993.

[5] Simmons R, Lin L-J, Fedor C. Autonomous task control for
mobile robots (TCA). Fifth IEEE International Symposium on
Intelligent Control, Philadelphia PA, September 1990.

[6] PLCopen. PLCopen. Standardization in Industrial Control Pro-
gramming. http://www.plcopen.org.

[7] AlbusJS, Quintero R. Towards a reference model architecture for
real-time intelligent control systems (ARTICS). Proceedings of
the IEEE Third International Symposium on Robotics and
Manufacturing, Burnaby, Canada, July, 1990.

[8] Simon D, Espiau B, Castillo E, Kapellos K. Computer-aided
design of a generic robot controller handling reactivity and real-
time control issues, Rapports de Recherche n° 1801, Programme
4: Robotique, Image et Vision, INRIA, November 1992.

[9] Cimetrix Incorporated. The CODE Programming Interface.
http://www.cimetrix.com/Software/CODE.html, 1997.

[10] Real-Time Innovations Inc. (RTI) and Stanford University. Con-
trolShell: Object-Oriented Framework for Real-Time System
Software. http://128.102.240.17 /products/cs.html, 1996.

[11] Fleury S, Herrb M, Chatila R, G;"M: a tool for the specification
and the implementation of operating modules in a distributed
robot architecture. Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS97),
Grenoble, France, 1997.

[12] von Puttkamer E, Zimmer UR. ALBATROSS: an operating-
system under realtime-constraints. Real-Time magazine, Diepen-
bemmd 5 - 1650 Beersel - Belgium, vol. 5, nr 3 91/3, 1991.

[13] Gentleman WM, MacKay SA, Stewart DA, Wein M. An intro-
duction to the harmony realtime operating system. Newsletter of

the IEEE Computer Society Technical Committee on Operating
Systems, Summer 1988. p. 3-6.

[14] Stewart DB, Schmitz DE, Khosla PK. The Chimera II real-time
operating system for advanced sensor-based control applications.
IEEE Transactions on Systems, Man and Cybernetics, (1992);
22(6):1282-95.

[15] Fernandez JA, Gonzalez J, Martin A. Communicating and integ-
rating the modules of a robotic software application. Fourth
International Symposium on Distributed Autonomous Robotic
Systems (DARS’98), Karlsruhe, Germany, May 1998.

[16] Ollero A, Simon A, Garcia F, Torres VE. Integrated mechanical
design of a new mobile robot. IFAC Symposium, Malaga (Spain),
New York: Pergamon Press, 1992.

[17] Gonzalez J, Stentz A, Ollero A. A mobile robot iconic position
estimator using a radial laser scanner. Journal of Intelligent and
Robotic Systems 1995;13:161-79.

[18] Gonzalez J, Ollero A, Reina A. Map building for a mobile robot
equipped with a laser range scanner. IEEE International Confer-
ence on Robotics and Automation, San Diego, 1994. p. 1904-10.

[19] Fernandez JA, Gonzalez J. Mobile robot path planning and
navigation using hierarchical graphs. International ICSC Sympo-
sium on Engineering of Intelligent Systems (EIS’98), Tenerife,
Spain, 1998.

[20] Fernandez JA, Gonzalez J. A general world representation for
mobile robot operations. Seventh Conference of the Spanish
Association for Artificial Intelligence (CAEPIA’97), Malaga,
Spain, November 1997.

[21] Munoz VF, Cruz A, Garcia-Cerezo A. Speed planning and gen-
eration approach based on the path-time space for mobile robots.
IEEE International Conference on Robotics and Automation.
Leuven, Belgium, 1998.



